
This is a list of the sizes, shapes, and general characteristics of some common primary and secondary battery types in household, automotive and light industrial use. The complete nomenclature for a battery specifies size, chemistry, terminal arrangement, and special characteristics.
This list is a summary of notable electric battery types composed of one or more electrochemical cells. Three lists are provided in the table. The primary (non-rechargeable) and secondary (rechargeable) cell lists are lists of battery chemistry. The third list is a list of battery applications.
The complete nomenclature for the battery will fully specify the size, chemistry, terminal arrangements, and special characteristics of a battery. The same physically interchangeable cell size may have widely different characteristics; physical interchangeability is not the sole factor in substitution of batteries.
National standards for dry cell batteries have been developed by ANSI, JIS, British national standards, and others. Civilian, commercial, government, and military standards all exist. Two of the most prevalent standards currently in use are the IEC 60086 series and the ANSI C18.1 series. Both standards give dimensions, standard performance characteristics, and safety information.
The first IEC standards for battery sizes were issued in 1957.[3]Since 1992, International standard IEC 60086 defines an alphanumeric coding system for batteries.[2][4]British standard 397 for primary batteries was withdrawn and replaced by the IEC standard in 1996.[5]
Standardization of batteries in the United States started in 1919, when the US National Bureau of Standards published recommended test procedures and standard dimensions of cells.[6] American standards were revised several times during the following decades, as new sizes of cells were introduced and new chemistry developed, including chloride, alkaline, mercury and rechargeable types.
In 1999 the ANSI standards were extensively revised and separate safety standards provided. The current edition of the ANSI standards designates sizes with an arbitrary number, with a prefix letter to designate shape, and with a suffix letter or letters to identify different chemistry, terminals, or other features.
Three different technical committees of IEC make standards on batteries: TC21 (lead-acid), SC21 (other secondary) and TC35 (primary). Each group has published standards relating to the nomenclature of batteries - IEC 60095 for lead-acid starter batteries, IEC 61951-1 and 61951-2 for Ni-Cd and Ni-MH batteries, IEC 61960 for Li-ion, and IEC 60086-1 for primary batteries.
Examples of the IEC nomenclature are batteries coded R20, 4R25X, 4LR25-2, 6F22, 6P222/162, CR17345 and LR2616J. The letters and numbers in the code indicate the number of cells, cell chemistry, shape, dimensions, the number of parallel paths in the assembled battery and any modifying letters deemed necessary. A multi-section battery (two or more voltages from the same package) will have a multi-section designation.
Prior to October 1990, round cells were designated with a sequential numeric size code ranging from R06 through to R70, for example R20 is the size of a "D" cell or ANSI"13" size. After October 1990, round cells are systematically identified with a number derived from their diameter and height. Primary cells larger than 100 mm in diameter or height are designated with an oblique "/" between diameter and height.
Certain sizes, given by one or two digit numbers, represent standard size codes from previous editions of the standard. Sizes given as 4 or more digits indicate the diameter of the battery and the overall height.
The numbers in the code correlate with the battery dimensions. For batteries with dimensions of < 100 mm the (truncated) diameter in millimetres, followed by the height in tenths of a millimetre; for batteries with a single dimension ≥ 100 mm the diameter in millimetres, then a slash (/) followed by the height in millimetres.
As well as the recommended size code definitions there are also ten modifying suffix letters that can be added to the end of the specific size code. These run from A to L (omitting F and I) and depending on the largest dimension of the battery can either signify 0.0 – 0.9 mm maximum dimensions or 0.00 – 0.09 mm maximum dimensions with A being 0.0 or 0.00 and L being 0.9 or 0.09.
Standardized size codes for round batteries which do not follow the current nomenclature but have been retained for ease of use are given by a one or two digit number following the R. These include but are not limited to:[8]
Round button batteries also carry two-digit size codes such as R44, see the button battery table for typical dimensions. Other round, flat, and square sizes have been standardized but are used mostly for components of multi-cell batteries.
After the package size code(s), additional letters may optionally appear. Terminal styles and variants of the same battery can be designated with the letters X or Y. Performance levels may also be designated with a C, P, S, CF, HH, or HB or other letter suffixes.An appended letter "W" states that this battery complies with all the requirements of the IEC 60086-3 standard for watch batteries, such as dimensional tolerance, chemical leakage, and test methods.
IEC nomenclature classifies batteries according to their general shape and overall physical appearance. These categories, however, are not identified in the IEC battery nomenclature:[9][10]
Nickel-cadmium and Nickel-metal hydride batteries follow a similar rule as the system above;[11][12] especially cylindrical cells designed to be dimensionally interchangeable with primary batteries use the same designation as the primary batteries, the codes for electrochemical systems as below.
Lithium-ion batteries have a different rule for naming, which applies both to batteries of multiple cells and single cell. They will be designated as:[13]
About List of battery sizes wikipedia
As the photovoltaic (PV) industry continues to evolve, advancements in List of battery sizes wikipedia have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.
When you're looking for the latest and most efficient List of battery sizes wikipedia for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.
By interacting with our online customer service, you'll gain a deep understanding of the various List of battery sizes wikipedia featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.
Related Contents