Lfp battery cycle life

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the si
Contact online >>

Thank you for visiting nature . You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The overvoltages generated in NMC cells during charging (ηCH) and discharging (ηDCH) and the OCV hysteresis (VHYS) are obtained from the difference between the cell voltages and OCVs (Fig. 1), as described in the Methods section. The overvoltages are calculated at low rates (C/50 and C/25) for fresh and aged cells (Fig. 2). In general, we find that the generated overvoltage increases during cycling, except for particular SoC values, such as those near 60%, when discharging at C/25 (Fig. 2d).

Overvoltages generated in NMC cells at C/50 during (a) charging and (b) discharging and at C/25 during (c) charging and (d) discharging. The increases in overvoltage after a cycle-ageing test are shown in the bottom panels.

We find that the overvoltage depends on the charge and discharge rates, as expected from the literature20. However, we note that the overvoltage rate dependence is also SoC dependent. For instance, this dependence can be clearly observed in the discharge overvoltage of an aged cell if we compare the results for an SoC of 64% at C/50 (Fig. 2b) and C/25 (Fig. 2d), in which a large variation is observed compared with neighbouring SoCs.

We find that the OCV hysteresis is larger for the aged cells (Fig. 3), except for SoCs, of approximately 25% and 13%, for which there is no variation with ageing. For both ageing states, various peaks are observed in the curves, which are related to a larger hysteresis at some particular SoCs. We find that these peaks tend to shift to higher SoCs as the cell ages.

If we compare the hysteresis increase during the cycling test (ΔVHYS) with the difference between the increases in charge and discharge overvoltages (ΔηCH-DCH), we find a correspondence between the two parameters (Fig. 5), as observed for the NMC cells (Fig. 4). Although the increase in discharge overvoltage is negative, the larger increase in charge overvoltage follows the same tendency as the hysteresis increase, and both terms have similar values. Larger differences can be observed at SoC values above 95%.

Incremental capacity of the (a,b) graphite and (c,d) NMC electrodes configured as half-cells during charging at C/25 and OCV hysteresis at room temperature. (a,c) represent fresh electrodes, and (b,d) represent aged electrodes. The yellow areas represent single-phase regions, and the grey areas delineate the operating SoC of the full cell.

We analysed two types of commercial Li-ion cells with LiCoO2–Li(NiMnCo)O2 (LCO-NMC or simply NMC) and LiFePO4 (LFP) as the positive electrode and graphite as the negative electrode. The NMC cells had a capacity of 2.8 Ah and were supplied by LG_Chem in the 18650 format. The expected cycle life reported by the manufacturer at which the cell maintains a capacity equal to or higher than 78% of the nominal capacity is 300 cycles when charging and discharging at C/2 at a temperature of 23 °C ± 2 °C.

LFP cells were provided by AA Portable Power Corp in the 14430 format with a nominal capacity of 0.4 Ah. The expected cycle life reported by the manufacturer at which the cell maintains a capacity equal to or higher than 70% of the nominal capacity is 1000 cycles when charging and discharging at a symmetric rate of C/5 at a temperature of 20 °C ± 5 °C.

To evaluate the cells at various ageing levels, the cells were subjected to a cycle-ageing process. The cells were charged at a constant current and voltage at the recommended C-rate and discharged at the maximum discharge C-rate allowed by the manufacturer.

About Lfp battery cycle life

About Lfp battery cycle life

As the photovoltaic (PV) industry continues to evolve, advancements in Lfp battery cycle life have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.

When you're looking for the latest and most efficient Lfp battery cycle life for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.

By interacting with our online customer service, you'll gain a deep understanding of the various Lfp battery cycle life featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.

Related Contents

Contact Integrated Localized Bess Provider

Enter your inquiry details, We will reply you in 24 hours.