The bad news is that Micronesia has an energy problem. The good news is that Micronesia has the opportunity to solve that energy problem while improving quality of life, expanding economic opportunities, and preserving traditional cultural values for Micronesians. One of the keys to Micronesia's Contact online >>
The bad news is that Micronesia has an energy problem. The good news is that Micronesia has the opportunity to solve that energy problem while improving quality of life, expanding economic opportunities, and preserving traditional cultural values for Micronesians. One of the keys to Micronesia's future is renewable energy. This means energy from sources that grow back or renew themselves. Micronesia is blessed with sun and wind, rain and mountain, ocean waves and depths; all sources of renewable energy for those with the wit and will to harvest them.
Energy from sources such as gasoline or diesel is not renewable because the petroleum they are made from formed over millions of years (hence 'fossil fuel'). Once the current supply of fossil fuels is gone, it's gone forever. Micronesia has no fossil fuel resources, so every gallon of fossil fuel we burn is imported. Many oil-exporting countries, or the supply routes the refined fuel must travel through, are politically unstable; any upset along the way causes shortages and higher prices here.
Micronesia has become addicted to imported fossil fuels. The supply of this 'drug' is becoming more expensive. Just as an addict will do anything to secure the next 'fix', so Micronesia will be tempted into unwise choices if it remains dependent. The wise choice is to kick the habit now, to immediately begin reducing Micronesian dependency on imported fossil fuels.
In 2002 (the last year for which the FSM government has released official numbers) the FSM imported nearly $15 million in fuels and lubricants, including gasoline, oil, diesel, kerosene, and aviation fuel. Even if demand remained flat, projecting the costs using the known increase in price would put 2006 imports into the range of $27 million – over a third of Compact funding ($79 million for 2006).
It's going to get worse. Most experts agree that we have already passed "peak oil" and that global oil production is on its way down, never to recover. Increasing demand and diminishing supply will continue to push prices higher. What will life in Micronesia be like five years from now, when gasoline is $10 a gallon on the main islands?
Micronesia is on a slippery slope to lower quality of life and reduced economic opportunities, but there is still time to reverse these trends. We need wisdom and foresight. We need to have a social conscience: What is best for the people of Micronesia? We need open-mindedness, to be willing to consider new ideas. We need generosity, to be willing to give up profits and graft from fossil fuel imports. Greed, sloth and stubborn ignorance will condemn us to a downward spiral.
One should probably not take advice from an 'expert' who repeatedly confuses Indonesia with Micronesia. The challenges and opportunities of these small islands are unique, and call for solutions that have been overlooked, devalued or discarded by conventional experts.
Conventional energy experts tend to favor large, centralized projects. When the US Army Corps of Engineers surveyed Pohnpei for hydropower potential, they found three sites where they could build huge concrete dams – then concluded that it wasn't worth the bother. They failed to identify the hundreds of sites that can each be tapped to provide microhydropower for a few homes or a village, without constructing a dam and for a comparatively tiny investment.
Trying to connect every load, and every generator, to a conventional utility grid is not a wise choice for Micronesia. Distributed power generation is probably a better choice, for technological, financial and social reasons.
A large, centralized system must be designed to power the heaviest possible load attached to it. This means wasted capacity (and wasted money), because not all the electricity generated 'just in case' will actually be used. Smaller systems can be built just large enough for a specific purpose. If you need to power a short-wave radio transmitter that the radio's manual tells you draws 250 watts, you know you won't need to buy a 5,000-watt generator.
Small distributed renewable energy systems are more cost-effective than large centralized generators when the population to be served is scattered over a wide area. Micronesia's few towns on the main islands may be served successfully by large utility-owned generators, but that model does not make financial sense for small villages in the most rural areas or on the outer islands.
Micronesians do not necessarily need or want wall voltage in large amounts, 24 hours a day, 365 days a year. If we break the energy problem down into individual energy needs, far more solutions become feasible. Mechanical power is needed for washing machines and power tools; controllable heat is needed for cooking; electrical power is needed for electronics, computers and communications equipment; and both adults and children need light to read by if Micronesia is to meet its literacy and education goals.
Distributed systems take advantage of the fact that it is often better to directly connect a renewable energy system to the device it is intended to power. For example, a manufacturer of ceiling fans recently found that the most cost-effective design was a solar panel directly connected to a direct current (DC) fan motor. When the sun is shining and the day is hot, the fan turns faster. There is no need for expensive and complicated controllers, batteries or long wiring runs, and the entire system has only one moving part.
One of the failures of 'expert' advice from outside Micronesia is that most advisors are not aware of the unique challenges this environment presents for any technology more advanced than a rock. When someone recommends a "fail-safe, fool-proof, 25-year warranty" gadget that will supposedly solve all of Micronesia's energy problems, ask them how much maintenance they've done in an equatorial rain forest surrounded by ocean.
The obvious and most common recommendation for outer island power is the solar photovoltaic (PV) panel. This is actually not a bad idea; the PV panel itself has no moving parts, and the latest amorphous cells can produce usable electricity even on cloudy days. The problems arise from two sources: 1) slime grows over the glass if is not cleaned off regularly, and 2) PV systems are inevitably designed to charge batteries that die prematurely in the Micronesian climate.
The consequences of early battery failure are serious. Batteries contain lead, cadmium, mercury and other poisonous materials. Throwing a used battery away poisons the environment. The heavy metals collect in the fatty tissues of fish, and then in the tissues of people who eat those fish, with severe health consequences. Used batteries must be collected and recycled to prevent pollution of Micronesia's soil and water, and poisoning of Micronesian people, animals, fish and plants.
If photovoltaic solar power – one of the simplest and most reliable renewable energy systems – has problems in Micronesia, how can we hope to solve our energy problem? The solutions lie in fitting renewable energy systems into traditional Micronesian ways of life.
About Micronesia distributed energy systems
As the photovoltaic (PV) industry continues to evolve, advancements in Micronesia distributed energy systems have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.
When you're looking for the latest and most efficient Micronesia distributed energy systems for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.
By interacting with our online customer service, you'll gain a deep understanding of the various Micronesia distributed energy systems featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.