Maximum power point tracking ( MPPT) or sometimes just power point tracking ( PPT)) is a technique used commonly with wind turbines and <u>photovoltaic</u> (PV) solar systems to maximize power extraction under all conditions. Contact online >>
Maximum power point tracking ( MPPT) or sometimes just power point tracking ( PPT)) is a technique used commonly with wind turbines and <u>photovoltaic</u> (PV) solar systems to maximize power extraction under all conditions.
Bei Solarzellen ist der Innenwiderstand und damit der optimale Betriebspunkt mit maximaler Leistungsabgabe nicht konstant, sondern hängt von externen Faktoren wie der momentanen Bestrahlungsstärke und der Temperatur des Moduls ab. Daher wird der am Solarmodul angeschlossene Lastwiderstand durch eine elektronische Schaltung laufend so verändert, dass er möglichst gleich dem momentanen Innenwiderstand der Solarzelle ist. Damit ist die Leistungsabgabe des Solarmoduls unter verschiedenen Betriebsbedingungen immer maximal.
Das Strom-Spannungsdiagramm, wie nebenstehend dargestellt, wird typischerweise so aufgetragen, dass die technische Stromrichtung des gemessenen Stroms in Sperrrichtung der Solarzelle zeigt. Der Strom wird damit bei Beleuchtung, im Gegensatz zur klassischen Diodenkennlinie, positiv aufgetragen.
Das Verhältnis zwischen der maximalen Leistung PMPP der Solarzelle am Maximum Power Point und dem Produkt aus Leerlaufspannung UL und Kurzschlussstrom IK wird Füllfaktor FF genannt:
Der Photostrom steigt mit steigender Temperatur leicht an und wird in der Praxis meist vernachlässigt. Bei steigender Bestrahlung des Solarmoduls steigt der Strom annähernd proportional, die Leistung nimmt zu. Die Spannung ändert sich dabei kaum. Bei steigender Temperatur fällt die Spannung leicht ab, weil der Sättigungsstrom, auch Dunkelstrom genannt, ansteigt.
Die Leistung, die sich aus dem Produkt der Spannung und dem Strom ergibt, sinkt demnach bei konstanter Einstrahlung und steigender Modultemperatur. Typische Werte sind −0,45 % pro Kelvin für kristalline Siliziumsolarzellen.
Die Erkennungsmerkmale sind auf die Eigenschaft der lokal maximalen Leistung zurückzuführen (Anstieg dp/dU=0). Sie sind gut geeignet, um in den Kennlinien auch ohne Leistungsachse die Position der MPPs zu bestimmen oder zu überprüfen. Sie sind auch anwendbar, wenn die Achsenskalierung fehlt.
In den nebenstehenden Abbildungen ist ein String aus zehn in Reihe geschalteten Solarmodulen dargestellt: Die blau gestrichelte Kurve steht für den Fall, dass alle Module gleichmäßig bestrahlt sind. Die schwarze Kurve steht für den Fall, dass zwei der zehn Module im Schatten liegen, und nur noch 20 % der Einstrahlung im Vergleich zu den übrigen Modulen (durch diffuse Strahlung) erhalten.
Es ist ersichtlich, dass es im verschatteten Fall nicht mehr nur ein Leistungs-Maximum gibt, sondern mehrere. Grün markiert ist der „globale MPP", also der tatsächliche Punkt maximaler Leistung. Rot markiert ist der „lokale MPP", also ein lokaler Hochpunkt auf der Leistungs-Kennlinie.
Sämtliche unten beschriebene Methoden suchen den MPP in relativ kleinen Schritten rund um das aktuelle Leistungsmaximum. Dies hat den Vorteil, dass der Solargenerator die meiste Zeit sehr nahe am MPP betrieben wird (hoher MPP-Anpassungswirkungsgrad). Der Nachteil ist, dass der Tracker bei einem teilverschatteten Solargenerator oftmals am lokalen MPP verharrt (s. o.), ohne den Weg zum globalen MPP zu finden.
Deshalb haben die meisten Wechselrichter-Hersteller[1] inzwischen eine zusätzliche Funktion integriert, die in regelmäßigen Abständen (meist alle 5–10 Minuten) sehr schnell die gesamte Kennlinie des Solargenerators durchfährt, um nach dem globalen MPP zu suchen. Diese Funktion wird als Schattenmanagement oder Verschattungsmanagement bezeichnet, teilweise auch als Sweeping-Funktion, und ersetzt nicht das fortlaufende MPP-Tracking.
Bei der Mehrzahl der Hersteller ist die Funktion ab Werk aktiviert, bei anderen kann sie im Menü aktiviert werden.[1] Der Ertragsverlust durch das regelmäßige Durchfahren der Kennlinie (währenddessen der Generator naturgemäß nicht im MPP betrieben wird) ist beispielsweise mit kleiner 0,2 % angegeben[2], als Dauer für das Durchfahren der Kennlinie werden beispielsweise 2 Sekunden genannt[3].
Zu beachten ist, dass der Eingangsspannungsbereich des Wechselrichters ein limitierender Faktor sein kann: Nur wenn die Anzahl der unverschatteten Module genügt, um allein mit diesen Modulen die Mindest-Eingangsspannung des Wechselrichters zu erreichen, kann dieser den globalen MPP ansteuern. Daher ist es bei Verschattungsrisiko wichtig, ausreichend lange Strings zu installieren. Das frühere Vorgehen, bei Verschattungsgefahr viele kurze Strings zu installieren, ist seit Einführung des Schattenmanagements überholt.
Bei der einfachsten Art der Suche nach dem Leistungsmaximum erhöht der MPP-Tracker kontinuierlich die Spannung der Solarzelle von null weg, wodurch die abgegebene Leistung steigt. Wird nun das Leistungsmaximum erreicht, so beginnt die Leistung wieder zu sinken, was als Abbruchkriterium für die Suche dient. Dieses iterative Verfahren führt ein Mikroprozessor im MPP-Tracker periodisch aus, sodass auch bei wechselnden Bestrahlungsverhältnissen immer ein Betrieb im maximalen Leistungspunkt vorliegt.
Durch Umformen der Gleichungen erhält man folgende Bedingungen für den Regler, wobei I und U die aktuellen Messwerte der Regelperiode sind und dI, dU die Änderungen zur vorangegangenen Regelperiode.
Der Regler ändert nun anhand dieser Bedingung die Belastung pro Regelzyklus schrittweise in jene Richtung, in der er sich der Bedingung vom angestrebten Leistungsmaximum nähert. Erfüllt das System nun diese Bedingung, wurde das Leistungsmaximum gefunden, und die Suche kann beendet werden. Ändert sich aufgrund der Beleuchtungsintensität der Solarzelle die abgegebene Leistung, nimmt der Regler die Suche wieder auf.
About Maximum power point tracking wikipedia
As the photovoltaic (PV) industry continues to evolve, advancements in Maximum power point tracking wikipedia have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.
When you're looking for the latest and most efficient Maximum power point tracking wikipedia for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.
By interacting with our online customer service, you'll gain a deep understanding of the various Maximum power point tracking wikipedia featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.